Comparison of two different implementations of a finite-difference-method for first-order pde in mathematica and matlab

نویسندگان

  • Heiko Herrmann
  • Gunnar Rueckner
چکیده

1 Physics and analytical solution The growth rate of microcracks in a brittle material can be discribed by a mesoscopic equation. Here the specialized version for uniaxial loading is presented. ∂f(l, t) ∂t = − 1 l2 ∂lvl(l, t)f(l, t) ∂l , (1) f(l, t) is the distribution function for the crack length l at time t, vl = l̇ is the growth velocity of the cracks. A Rice-Griffith-like dynamic is assumed for crack growth, which gives

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling

Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

Freezing in a Finite Slab Using Extensive Perturbation Expansions Method

In this paper Mathematica is used to solve the moving boundary problem of freezing in a finite slab for higher order perturbations. Mathematica is a new system which makes it possible to do algebra with computer. More specifically, it enables researchers to find the location of the ice at any time for as high order of perturbation as one whishes. Using of Mathematica and outer solution and an i...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0506051  شماره 

صفحات  -

تاریخ انتشار 2005